Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 242(Pt 2): 124814, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37201889

RESUMO

Metal nanoparticles have been tremendously utilised, such as; antibacterial and anticancer agents. Although metal nanoparticles exhibits antibacterial and anticancer activity, but the drawback of toxicity on normal cells limits their clinical applications. Therefore, improving the bioactivity of hybrid nanomaterial (HNM) and minimizing toxicity is of paramount importance for biomedical applications. Herein, a facile and simple double precipitation method was used to develop biocompatible and multifunctional HNM from antimicrobial chitosan, curcumin, ZnO and TiO2. In HNM, biomolecules chitosan and curcumin were used to control the toxicity of ZnO and TiO2 and improve their biocidal properties. The cytotxicological properties of the HNM was studied against human breast cancer (MDA-MB-231) and fibroblast (L929) cell lines. The antimicrobial activity of the HNM was examined against Escherichia coli and Staphylococcus aureus bacteria, via the well-diffusion method. In addition, the antioxidant property was evaluated by the radical scavenging method. These findings actively, support the ZTCC HNM potential, as an innovative biocidal agent for applications in the clinical and healthcare sectors.


Assuntos
Anti-Infecciosos , Quitosana , Curcumina , Nanoestruturas , Óxido de Zinco , Humanos , Curcumina/farmacologia , Óxido de Zinco/farmacologia , Antibacterianos/farmacologia
2.
Carbohydr Polym ; 274: 118646, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34702465

RESUMO

Biocidal activity and biocompatibility of nanomaterials (NMs) are crucial for healthcare applications. This study aims to develop biocidal hybrid NMs with high inhibition rates to control multidrug-resistant bacterial infection compared to conventional antibiotics. Herein, ZnO, chitosan-ZnO (CZnO) and alginate-ZnO (AZnO) NMs were synthesized via a simple one-pot technique. The one-pot process facilitates the efficiency of a chemical reaction whereby a reactant is subjected to successive chemical reactions in just one step. The resulted NMs bio-physicochemical features were analyzed using various analytical methods. The bactericidal and bacteriostatic mechanism of NMs strongly depends on the production of reactive oxygen species in NMs, due to their size, large surface areas, oxygen vacancies, ion release, and diffusion ability. The antibacterial potential of the NMs was tested against methicillin-resistant Staphylococcus aureus. The inhibition zone disclosed that the AZnO possessed an excellent antibacterial activity compared to ZnO and CZnO. Furthermore, toxicity studies revealed that the AZnO demonstrated low toxicity to the HepG2 cell lines. These results confirmed that the AZnO hybrid nanomaterials are promising futuristic biocidal agents suitable for the clinical and healthcare industries.


Assuntos
Alginatos , Antibacterianos/farmacologia , Quitosana , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Nanoestruturas , Óxido de Zinco , Alginatos/química , Alginatos/farmacologia , Quitosana/química , Quitosana/farmacologia , Células Hep G2 , Humanos , Nanoestruturas/química , Nanoestruturas/microbiologia , Espécies Reativas de Oxigênio/farmacologia , Óxido de Zinco/química , Óxido de Zinco/farmacologia
3.
J Hazard Mater ; 411: 124884, 2021 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-33858076

RESUMO

In the present scenario, the development of eco-friendly multifunctional biocidal substances with low cost and high efficiency, has become the center of focus. This study is, focused on the synthesis of magnesium oxide (MgO) and chitosan-modified magnesium oxide (CMgO) nanoparticles (NPs), via a green precipitation process. In this process, leaves extract of Plumbago zeylanica L was, used as a nucleating agent. The MgO and CMgO NPs exhibit face-centered cubic structures, as confirmed by XRD studies. Morphologically, the FESEM and TEM images showed that the MgO and CMgO NPs were spherical, with an average particle size of ~40±2 and ~37±2 nm, respectively. EDX spectra were used to identify the elemental compositions of the nanoparticles. By using FTIR spectra, the Mg-O stretching frequency of MgO and CMgO NPs were observed at 431 and 435 cm-1, respectively. The photoluminescence (PL) spectra of MgO and CMgO NPs, revealed oxygen vacancies at 499 nm and 519 nm, respectively, due to the active radicals generated, which were responsible for their biocidal activities. The toxicity effects of the nanoparticles developed, on cell viability (antibacterial and anticancer), were measured on the MCF-7 cell line and six different types of gram-negative bacteria. The antibacterial activities of the nanoparticles on: Klebsiella pneumoniae, Escherichia coli, Shigella dysenteriae, Pseudomonas aeruginosa, Proteus vulgaris and Vibrio cholerae bacteria, were studied with the well diffusion method. The MgO and CMgO NPs were tested on breast cancer cell line (MCF-7) via an MTT assay and it proved that CMgO NPs possess higher anticancer properties than MgO NPs. Overall, CMgO NPs showed a higher amount of cytotoxicity for both the bacterial and cancer cells when compared to the MgO NPs. Toxicity studies of fibroblast L929 cells revealed that the CMgO NPs were less harmful to the healthy cells when compared to the MgO NPs. These results suggest that biopolymer chitosan-modified MgO NPs can be used for healthcare industrial applications in order to improve human health conditions.


Assuntos
Quitosana , Nanopartículas Metálicas , Nanopartículas , Antibacterianos/toxicidade , Quitosana/toxicidade , Bactérias Gram-Negativas , Humanos , Óxido de Magnésio/toxicidade , Nanopartículas Metálicas/toxicidade , Testes de Sensibilidade Microbiana , Nanopartículas/toxicidade , Extratos Vegetais
4.
Carbohydr Polym ; 259: 117762, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33674015

RESUMO

Biopolymer-based nanomaterials have been developed as antimicrobial and anticancer agents due to their advanced physical, chemical and biomedical characteristics. Herein, chitosan-copper oxide nanomaterial was, successfully synthesized by a green method. In this process, copper salt was nucleated with Psidium guajava leaves extract in order to form the nanomaterial in the chitosan network. Attenuated total reflection-fourier transform, infrared spectroscopy, X-ray diffraction, Dynamic light scattering, Transmission electron microscope, Field emission scanning electron microscopy/Energy dispersive X-ray analysis, X-ray photoelectron spectroscopy and Photoluminescence spectroscopy techniques were, employed to characterize the synthesized nanomaterial. The average size of the nanomaterial was identified to be ∼52.49 nm with XRD. The antibacterial study of CCuO NM showed higher activity than the commercial amoxicillin against gram-positive (G + ve) (Staphylococcus aureus, Bacillus subtilis) and gram-negative (G-ve) bacteria (Klebsiella pneumonia, Escherichia coli). CCuO NM showed in-vitro anticancer potential against human cervical cancer cells (Hela) with an IC50 concentration of 34.69 µg/mL. Photoluminescence spectrum of CCuO NM showed a green emission (oxygen vacancies) observed at ∼516 nm, which is attributed to the generation of reactive oxygen species (ROS) by the nanomaterial, which is believed, to be responsible for the biocidal (cell death) effects. These results suggested that CCuO is a promising nanomaterial that could be suitable for advanced applications in the healthcare industries.


Assuntos
Antibacterianos/química , Antineoplásicos/química , Quitosana/química , Cobre/química , Nanoestruturas/química , Animais , Antibacterianos/farmacologia , Antineoplásicos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Química Verde , Células HeLa , Humanos , Camundongos , Testes de Sensibilidade Microbiana , Nanoestruturas/toxicidade , Tamanho da Partícula , Folhas de Planta/química , Folhas de Planta/metabolismo , Psidium/química , Psidium/metabolismo , Espécies Reativas de Oxigênio/metabolismo
5.
Carbohydr Polym ; 249: 116825, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32933672

RESUMO

As a result of the existence of drug-resistant bacteria and the attendant deficiency of innovative antibiotics, the therapeutic and the clinical sectors are, continually, in search of appropriate multifunctional nanomedicines. Herein, curcumin-chitosan-zinc oxide (CCZ) was successfully synthesized by a one-pot method. Transmission electron micrograph reveals that curcumin and chitosan were layered on a hexagonal ZnO and the particles are sized to ∼48 ±2nm. X-ray diffractogram confirmed the formation of CCZ crystal structure. The photoluminescence spectra of CCZ, shows blue and green emissions at 499 nm and 519 nm, respectively, due to the active radicals generated in the nanomaterial, which are responsible for the associated antimicrobial and anticancer activities. The antibacterial activity of the CCZ, performed against methicillin-resistant Staphylococcus aureus (MRSA) and Escherichia coli (E. coli), showed a greater antibacterial effect than the commercial amoxicillin. The cytotoxic effect of the CCZ nanomaterial was examined in cultured (MCF-7) human breast cancer cells. An IC50 concentration value of 43.53 µg/mL, was recorded when evaluated after 24 h of CCZ with the MCF-7 cell line. From this study, it is believed that CCZ is a highly promising nanomaterial, which will be suitable for advanced clinical applications.


Assuntos
Antibacterianos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Quitosana/química , Curcumina/farmacologia , Escherichia coli/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Óxido de Zinco/química , Curcumina/química , Feminino , Humanos , Nanopartículas Metálicas/administração & dosagem , Nanopartículas Metálicas/química , Testes de Sensibilidade Microbiana , Nanoestruturas/administração & dosagem , Nanoestruturas/química
6.
J Colloid Interface Sci ; 554: 9-18, 2019 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-31265966

RESUMO

The study explores biogenic nitrogen doped carbon microspheres derived from resorcinol, formaldehyde (BNCMs), for battery application. Ureolytic bacteria were used to produce biogenic ammonia in the form of ammonium carbonate and ammonium bicarbonate. Copolymerization of resorcinol, formaldehyde and biogenic ammonia at 60-80 °C produces BNCMs. Elemental analysis evidences that the nitrogen-enriched carbon microspheres contain about 8% of nitrogen. The BNCMs anode exhibits appreciable reversible capacity and excellent rate performance in lithium ion batteries (LIBs) and sodium ion batteries (SIBs). In the case of LIBs, BNCMs anode exhibits an excellent stable specific capacity of 580 mAh g-1 with 97% of capacity retention even after 100 cycles without any significant capacity fading. Similarly, the observed capacity is as 102 mAh g-1 for 1000 cycles at a high rate current density of 1 A g-1 without any considerable capacity fade. In SIBs, BNCMs anode delivers a specific discharge and charge capacity of 405 and 195 mAh g-1 respectively. Further, prolonged cycles BNCMs anode exhibits a steady state progressive capacity of 170 mAh g-1 even after 100 cycles with steady state capacity. BNCMs thus evidence its suitability as high performance anode material for both LIBs and SIBs.

7.
Environ Sci Pollut Res Int ; 25(11): 10482-10492, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28963600

RESUMO

In the present scenario, the synthesis and characterization of zinc oxide (ZnO) and cerium oxide (CeO2) nanoparticles (NPs) through biological routes using green reducing agents are quite interesting to explore various biomedical and pharmaceutical applications, particularly for the treatment of cancer. This study was focused on the phytosynthesis of ZnO and CeO2 NPs using the leaf extract of Rubia cordifolia L. The active principles present in the plant extract were liable for rapid reduction of Zn and Ce ions to metallic nanocrystals. ZnO and CeO2 NPs were characterized by UV-visible spectroscopy, X-ray diffraction analysis (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), energy dispersive X-ray spectroscopy (EDAX), and photoluminescence (PL) techniques. ZnO and CeO2 NPs were partially agglomerated with a net-like structure. Biomedical activities of ZnO and CeO2 NPs were tested against MG-63 human osteosarcoma cells using MTT and reactive oxygen species (ROS) quantification assays. In treated cells, loss of cell membrane integrity, oxidative stress, and apoptosis was observed and it is well correlated with cellular damage immediately after induction. Overall, this study shed light on the anti-cancer potential of ZnO and CeO2 NPs on MG-63 human osteosarcoma cells through differential ROS production pathways, describing the potential role of greener synthesis.


Assuntos
Antibacterianos/farmacologia , Cério/química , Nanopartículas Metálicas/química , Nanopartículas/química , Osteossarcoma/tratamento farmacológico , Extratos Vegetais/farmacologia , Óxido de Zinco/química , Antibacterianos/química , Linhagem Celular , Humanos , Microscopia Eletrônica de Varredura , Osteossarcoma/metabolismo , Espectroscopia Fotoeletrônica , Extratos Vegetais/química , Espécies Reativas de Oxigênio , Rubia , Espectrometria por Raios X , Espectroscopia de Infravermelho com Transformada de Fourier
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA